skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Safronova, Marianna_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While it is possible to estimate the dark matter density at the Sun distance from the galactic center, this does not give information on actual dark matter density in the Solar system. There can be considerable local enhancement of dark matter density in the vicinity of gravitating centers, including the Sun, the Earth, as well as other planets in the solar system. Generic mechanisms for the formation of such halos were recently elucidated. In this work, we studies the possible halo dark matter overdensities and corresponding dark matter masses allowed for various objects in the solar system. We explore spacecraft missions to detect such halos with instruments such as quantum clocks, atomic and molecular spectrometers designed to search for fast (tens of hertz to gigahertz) oscillations of fundamental constants, highly sensitive comagnetometers, and other quantum sensors and sensor networks. 
    more » « less
  2. Abstract Optical atomic clocks are the most accurate and precise measurement devices of any kind, enabling advances in international timekeeping, Earth science, fundamental physics, and more. However, there is a fundamental tradeoff between accuracy and precision, where higher precision is achieved by using more atoms, but this comes at the cost of larger interactions between the atoms that limit the accuracy. Here, we propose a many-ion optical atomic clock based on three-dimensional Coulomb crystals of order one thousand Sn2+ions confined in a linear RF Paul trap with the potential to overcome this limitation. Sn2+has a unique combination of features that is not available in previously considered ions: a1S0 ↔ 3P0clock transition between two states with zero electronic and nuclear angular momentum (I = J = F = 0) making it immune to nonscalar perturbations, a negative differential polarizability making it possible to operate the trap in a manner such that the two dominant shifts for three-dimensional ion crystals cancel each other, and a laser-accessible transition suitable for direct laser cooling and state readout. We present calculations of the differential polarizability, other relevant atomic properties, and the motion of ions in large Coulomb crystals, in order to estimate the achievable accuracy and precision of Sn2+Coulomb-crystal clocks. 
    more » « less
  3. Abstract We improve by a factor of 4–20 the energy accuracy of the strongest soft X-ray transitions of Fexviiions by resonantly exciting them in an electron beam ion trap with a monochromatic beam at the P04 beamline of the PETRA III synchrotron facility. By simultaneously tracking instantaneous photon-energy fluctuations with a high-resolution photoelectron spectrometer, we minimize systematic uncertainties down to 10–15 meV, or velocity equivalent ±∼5 km s−1in their rest energies, substantially improving our knowledge of this key astrophysical ion. Our large-scale configuration-interaction computations include more than 4 million relativistic configurations and agree with the experiment at a level without precedent for a 10-electron system. Thereby, theoretical uncertainties for interelectronic correlations become far smaller than those of quantum electrodynamics (QED) corrections. The present QED benchmark strengthens our trust in future calculations of many other complex atomic ions of interest to astrophysics, plasma physics, and the development of optical clocks with highly charged ions. 
    more » « less